

620043, Россия, Екатеринбург, ул. Черкасская, 25

Комплектные трансформаторные подстанции

Мачтовая (КТПМ) стр. 4

Столбовая (КТПС) стр. 12

Киосковая (КТПК) стр. 19

Высоковольтные модули для пунктов стр. 24 коммерческого учета

ОАО «Свердловский завод трансформаторов тока» работает на рынке электротехнических изделий с 1941г.

Товарный знак ОАО «СЗТТ» запатентован и используется с марта 1989 года. Все изделия завода проходят обязательную сертификацию в органах Госстандарта Российской Федерации. Кроме того, предприятие имеет лицензии на проектирование и изготовление изделий для атомных станций.

Система менеджмента сертифицирована на соответствие требованиям международных стандартов ISO 9001:2008, ISO 14001:2007 и OHSAS 18001:2007.

Сегодня, в соответствии с используемой технологией, ОАО «СЗТТ» выпускает:

- измерительные трансформаторы тока и напряжения с литой изоляцией до 110 кВ;
- силовые трансформаторы с литой изоляцией мощностью до 2500кВА включительно;
- силовые трансформаторы с масляной изоляцией до 1000 кВА;
- трансформаторы тока нулевой последовательности;
- высокоточные лабораторные трансформаторы и изоляторы различного назначения.

На базе лабораторных трансформаторов завод поставляет укомплектованные испытательные станции для метрологической поверки измерительных трансформаторов.

В 2008 году на ОАО «СЗТТ» начат выпуск распределительных устройств собственной разработки РУ ЕС-01-10, КСО-208 и комплектных трансформаторных подстанций.

Преобразуя энергию, стремимся к совершенству!

Комплектные трансформаторные подстанции мачтового типа

на напряжение 6 (10) кВ, мощностью до 250 кВА

Подстанции трансформаторные мачтового типа (КТПМ) мощностью от 10 кВА до 250 кВА предназначены для приема электрической энергии переменного трехфазного тока частотой 50 Гц, напряжением 6 или 10 кВ и преобразования ее в электрическую энергию переменного тока частотой 50 Гц напряжением 0,4 кВ.

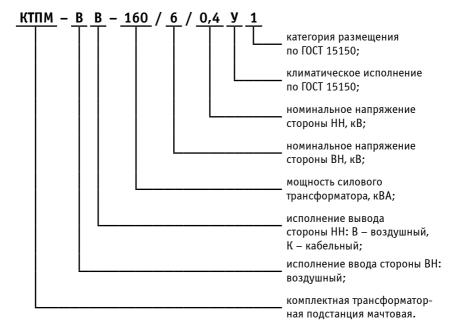
КТПМ изготавливаются как с масляными трансформаторами типа ТМГ, так и с сухими типа ТЛС всей линейки до 250 кВА.

КТПМ применяются для электроснабжения фермерских хозяйств, садовоогородных участков, населенных пунктов, небольших промышленных объектов, нефтяных скважин, железнодорожных и других потребителей. КТПМ с сухими трансформаторами могут использоваться и в местах постоянного пребывания людей, а также вблизи ответственных объектов инфраструктуры, так как не содержат трансформаторного масла.

Подстанция **НЕ предназначена** для работы во взрывоопасных местах, в агрессивных средах, нарушающих работу КТП и разрушающих металлы и изоляцию.

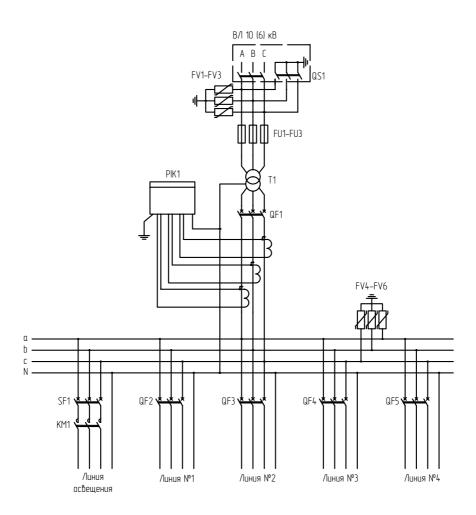
КТПМ соответствует требованиям ГОСТ 14695 и ТУ 16-2011 ОГГ.674800.001 ТУ.

Условия эксплуатации


- Климатическое исполнение и категория размещения У1 и УХЛ1 по ГОСТ 15150 и ГОСТ 15543.1;
- Высота установки над уровнем моря не более 1000 м;
- Температура окружающей среды: от -45 °C до +40 °C для У1, от -60 °C до +40 °C для УХЛ1;
- Скорость ветра не более 36 м/с.

Основные технические данные

Мощность силового трансформатора, кВА	10	16	25	40	63	100	160	250
Тип силового трансформатора	тлс, тмг, тм							
Номинальное напряжение на стороне ВН, кВ	6;10							
Номинальное напряжение на стороне НН, кВ	0,4							
Схема и группа соединения обмоток трансформатора	Ү/Үн-0, Д/Үн-11							
Номинальные токи линий, А:								
линия №1	16	25	31,5	31,5	40	40	80	80
линия №2	-	-	31,5	63	63	100	160	160
линия №3	-	-	-	-	40	80	100	100
линия №4	-	-	-	-	-	-	-	250
линия уличного освещения	10	10	16	16	16	16	16	16
Масса без трансформатора, кг, не более:								
с сухим	500 650							
с масляным	500							
Степень защиты оболочки по ГОСТ 14254	IP23							


Пример условного обозначения

Пример условного обозначения представлен на примере трехфазной комплектной трансформаторной подстанции мачтового типа, мощностью 160 кВА, напряжением стороны ВН — 6 кВ, напряжение на стороне НН — 0,4 кВ, с воздушным вводом стороны ВН и воздушным выводом стороны НН, климатическое исполнение и категория размещения по ГОСТ 15150 — У1.

Рис. 1. Пример принципиальной электрической схемы

Конструкция

Конструктивно КТПМ состоит из шкафа устройства со стороны высшего напряжения (УВН), силового трансформатора (ТМГ, ТЛС), шкафа распределительного устройства со стороны низшего напряжения (РУНН). Шкафы устанавливаются на общую сварную раму. В транспортном положении на раме остается закрепленным только шкаф РУНН, а шкаф УВН либо транспортируется на отдельном поддоне (подстанция с сухим трансформатором типа ТЛС), либо устанавливается позади шкафа РУНН на раму (подстанция с масляным трансформатором типа ТМГ). Благодаря такой компоновке высота транспортного блока составляет не более 1800 мм.

Принципиальным отличием подстанций с сухими трансформаторами от подстанций с масляными трансформаторами является наличие специального отсека, в который устанавливается сухой трансформатор для защиты от атмосферных осадков. В случае использования масляного трансформатора его силовые выводы закрываются специальным кожухом.

Сухие трансформаторы транспортируются непосредственно в своем отсеке, без демонтажа. Масляные трансформаторы перевозятся отдельно от подстанции.

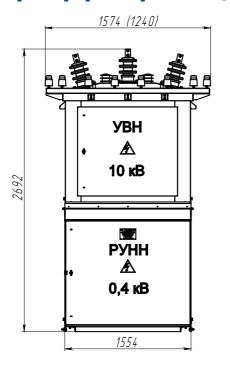
На крыше шкафа УВН устанавливаются проходные изоляторы, которые, внутри шкафа, соединяются с предохранителями типа ПКТ. Также на крыше шкафа УВН устанавливаются траверсы с ограничителями перенапряжения и низковольтными штыревыми изоляторами. Внутри шкафа УВН имеются отдельные кабельные каналы для прокладки проводов низкого напряжения.

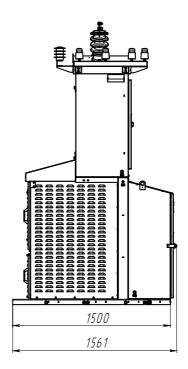
В шкафу РУНН применяется широкая линейка низковольтной аппаратуры, выбор типа которой зависит от заказа. Применяемые счетчики могут быть как прямого (мощность подстанции до 63 кВА), так и трансформаторного включения. Количество аппаратов отходящих линий ограничено четырьмя устройствами. По заказу возможна установка фидера уличного освещения.

Для категории размещения УХЛ счетчики устанавливаются в отдельном обогреваемом боксе.

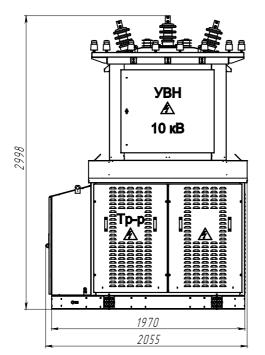
КТПМ подключается к ЛЭП через разъединитель, установленный на соседней опоре. Разъединитель может входить в комплект поставки по дополнительному заказу.

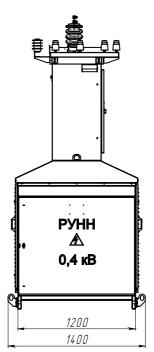
Внешний вид КТПМ с сухим трансформатором мощностью до 63 кВА представлен на рисунке 2.

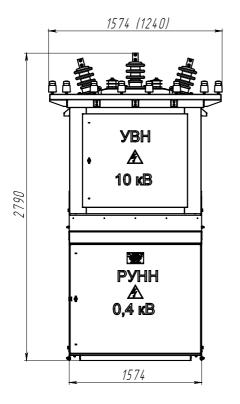

Внешний вид КТПМ с сухим трансформатором мощностью от 100 кВА до 250 кВА представлен на рисунке 3.


Внешний вид КТПМ с масляным трансформатором представлен на рисунке 4.

Преимущества


- использование двух типов трансформаторов;
- применение КТПМ с сухими трансформаторами возможно вблизи жилых домов, ввиду отсутствия трансформаторного масла;
- удобный доступ к силовому трансформатору;
- быстрота монтажа на месте эксплуатации;
- рабочая температура до минус 45 °C (У1) и до минус 60 °C (УХЛ1).


Рис. 2. Внешний вид КТПМ с сухим трансформатором, мощностью до 63 кВА


Рис. 3. Внешний вид КТПМ с сухим трансформатором, мощностью от 100 кВА до 250 кВА

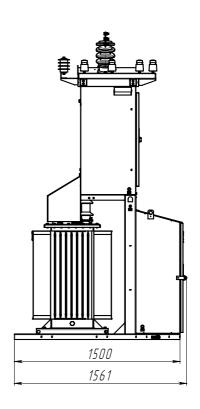


Рис. 4. Внешний вид **КТПМ** с масляным трансформатором

Комплектные трансформаторные подстанции столбового типа

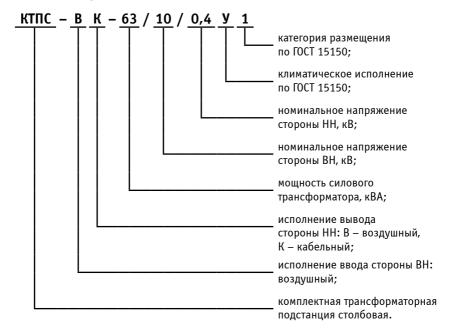
на напряжение 6(10) кВ мощностью до 100 кВА

Подстанции трансформаторные столбовые типа КТПС мощностью до 100 кВА предназначены для приема электрической энергии переменного трехфазного или однофазного тока частотой 50 Гц, напряжением 6 или 10 кВ и преобразования ее в электрическую энергию переменного тока частотой 50 Гц напряжением 0,4 и/или 0,23 кВ.

КТПС применяются для электроснабжения фермерских хозяйств, садово-огородных участков, населенных пунктов, небольших промышленных объектов и других потребителей.

Подстанция **НЕ предназначена** для работы во взрывоопасных местах, в агрессивных средах, нарушающих работу КТП и разрушающих металлы и изоляцию.

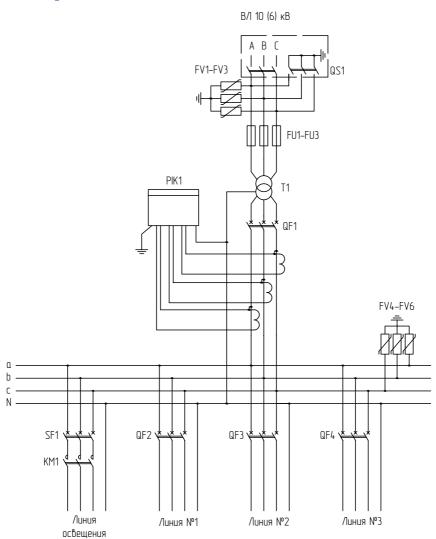
КТПС соответствует требованиям ГОСТ 14695 и ТУ 16-2011 ОГГ.674800.001 ТУ.


Условия эксплуатации

- Климатическое исполнение и категория размещения У1 и УХЛ1 по ГОСТ 15150 и ГОСТ 15543.1;
- Высота установки над уровнем моря не более 1000 м;
- Температура окружающей среды: от -45 °C до +40 °C для У1, от -60 °C до +40 °C для УХЛ1;
- Скорость ветра не более 36 м/с.

Основные технические данные

Паманатан	Исполнение по количеству фаз									
Параметры	однофазная			трёхфазная						
Мощность силового трансформатора, кВА	1,25	2,5	4	10	16	25	40	63	100	
Тип силового трансформа- тора	ол			тлс, тмг, тм						
Номинальное напряжение на стороне ВН, кВ	6;10									
Номинальное напряжение на стороне НН, кВ	0,23			0,4						
Схема и группа соединения обмоток трансформатора	1/1-0			Ү/Үн-0, Д/Үн-11						
Номинальные токи линий, А:										
линия №1	5	10	10	16	25	31,5	31,5	40	40	
линия №2	-	-	8		-	-	63	63	100	
линия №3	-	-	-	-	-	-	-	40	80	
линия уличного освещения	-	-	-	10	10	16	16	16	16	
Масса без трансформатора, кг, не более	160									
Степень защиты оболочки по ГОСТ 14254	IP23									


Пример условного обозначения

Пример условного обозначения представлен на примере трехфазной комплектной трансформаторной подстанции столбового типа, мощностью 63 кВА, напряжением стороны ВН — 10 кВ, напряжение на стороне НН — 0,4 кВ, с воздушным вводом стороны ВН и кабельным выводом стороны НН, климатическое исполнение и категория размещения по ГОСТ 15150 — У1.

Рис. 1. Пример принципиальной электрической схемы

Конструкция

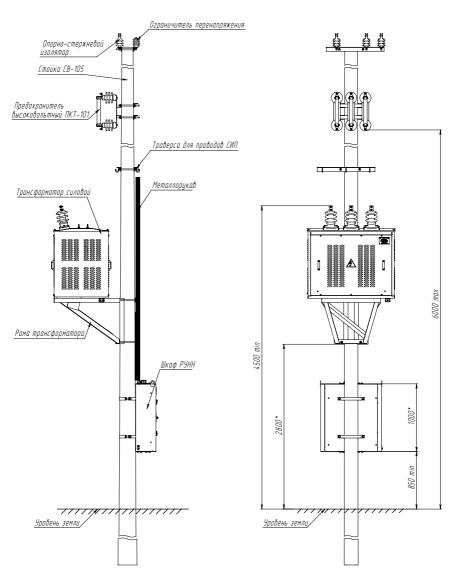
Конструктивно КТПС представляет собой набор оборудования, монтируемого на железобетонной опоре. На вершине опоры устанавливаются траверсы с опорно-стержневыми изоляторами и ограничителями перенапряжения. Под ними на отдельном кронштейне располагаются предохранители типа ПКТ. Трансформаторы типа ТЛС устанавливаются на раму в специальном кожухе, защищающем его от воздействия окружающей среды. Распределительное устройство низкого напряжения (РУНН) выполняется в виде шкафа; имеет две двери (внутреннюю и наружную) для защиты персонала от прикосновения к токоведущим частям. В РУНН возможна установка автоматических выключателей, выключателей-предохранителей, применяются счетчики как прямого, так и трансформаторного включения.

Для категории размещения УХЛ счетчики устанавливаются в отдельном обогреваемом боксе.

Ввод и вывод питающих кабелей из РУНН осуществляется через сальниковые уплотнения со степенью защиты IP 54. Сами кабели прокладываются в металлорукавах, закрепленных на опоре.

КТПС подключается к ЛЭП через разъединитель, установленный на соседней опоре. Разъединитель может входить в комплект поставки по дополнительному заказу.

Внешний вид КТПС с трехфазным трансформатором представлен на рисунке 2.


Внешний вид КТПС с однофазным трансформатором представлен на рисунке 3.

Преимущества

- использование двух типов трансформаторов;
- применение КТПС с сухими трансформаторами возможно вблизи жилых домов, ввиду отсутствия трансформаторного масла;
- рабочая температура до минус 45°C (У1)и до минус 60°C (УХЛ1).

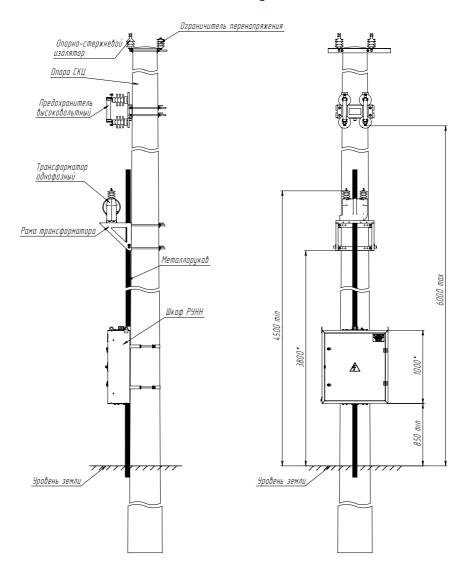
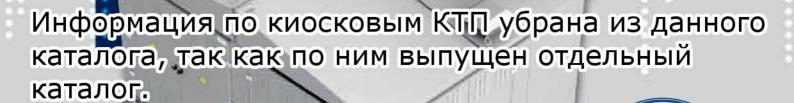


Рис. 2. Внешний вид трехфазной КТПС


Рис. 3. Внешний вид однофазной КТПС

КОМПЛЕКТНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ КИОСКОВОГО ТИПА

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

Высоковольтный модуль для пунктов коммерческого учета с трансформаторами напряжения типа ЗНОЛПМ

Основные сведения об изделии

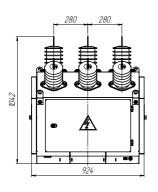
Высоковольтный модуль предназначен для использования в составе пунктов коммерческого учета наружной установки в воздушных распределительных сетях 6-10 кВ.

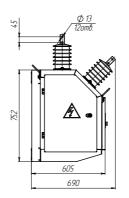
Конструктивные особенности

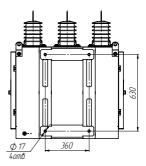
Высоковольтный модуль (ВМ) представляет собой металлический каркас, оборудованный с трех сторон дверками (спереди, справа, слева). На передней и задней стенках каркаса установлены съемные рымы. Степень защиты обеспечивается применением уплотнений, фиксация дверок – замками. Трансформаторы тока (проходные) и проходные изоляторы установлены на крыше каркаса, трансформаторы напряжения и блок зажимов низковольтных цепей расположены внутри каркаса. На дне каркаса предусмотрен выход через сальник кабеля низковольтных цепей и место заземления ВМ. ВМ устанавливает-

ся непосредственно на опору воздушной линии (ВЛ) на проектной высоте (не менее 4,5 м от земли до токоведущих частей) и крепится четырьмя шпильками.

Отличительной особенностью высоковольтных модулей ВМ от других ПКУ являются малые габариты и вес. Это достигнуто за счет применения трансформаторов тока ТПОЛ-10 III УХЛ1 (см. стр. 31) наружной установки, которые одновременно выполняют функции проходных изоляторов.


Конструкция предусматривает возможность установки до трех трансформаторов тока и до трех трансформаторов напряжения на номинальное напряжение 6 и 10 кВ (ТПОЛ-10 III УХЛ1, ЗНОЛПМ-10 УХЛ2).





Мпсса: 187 кг.

Условия эксплуатации

В части воздействия климатических факторов внешней среды — исполнение УХЛ, категория размещения 1 по ГОСТ 15150.

В части стойкости к механическим внешним воздействующим факторам – группа М1 по ГОСТ 17516.1.

Высота над уровнем моря – не более 1000 м. Окружающая среда не взрывоопасная, не содержащая токопроводящей пыли, а также агрессивных паров и газов в в концентрациях, вызывающих разрушение металла и изоляции.

Рабочее положение в пространстве вертикальное с допустимым отклонением не более 10° в любую сторону.

Технические характеристики

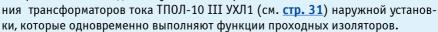
Номинальное напряжение, кВ	6(10)
Номинальная частота, Гц	50
Наибольшее рабочее напряжение, кВ	7,2(12,0)
Номинальный ток главных цепей, А	5-600
Номинальный ток вспомогательных цепей, А	5
Ток термической стойкости, кА (1 сек)	40*
Номинальный ток электродинамической стойкости, кА (амплитуда)	102*
Степень защиты по ГОСТ 14254	IP43
Климатическое исполнение и категория размещения по ГОСТ 15150	УХЛ1

^{*} Значения приведены для номинального тока главных цепей 600 А

Комплектность поставки

Комплект поставки ВМ включает в себя трансформаторы тока и напряжения (кол-во по заказу), каркас, блок зажимов низковольтных цепей и весь необходимый крепеж для установки на опоре ВЛ и подключения к линии электропередачи.

Высоковольтный модуль для пунктов коммерческого учета с трансформаторами напряжения типа НОЛП


Основные сведения об изделии

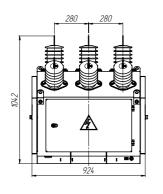
Высоковольтный модуль предназначен для использования в составе пунктов коммерческого учета наружной установки в воздушных распределительных сетях 6-10 кВ.

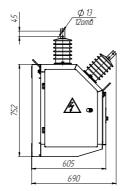
Конструктивные особенности

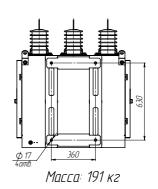
Высоковольтный модуль (ВМ) представляет собой металлический каркас с дверками с трех сторон (спереди, справа, слева). На передней и задней стенках каркаса установлены съемные рымы. Степень защиты обеспечивается применением уплотнений, фиксация дверок - замками. Трансформаторы тока (проходные) и проходные изоляторы установлены на крыше каркаса, трансформаторы напряжения и блок зажимов низковольтных цепей расположены внутри каркаса. На дне каркаса предусмотрен выход через сальник кабеля низковольтных цепей и место заземления ВМ. ВМ устанавливается непосредственно на опору воздушной линии (ВЛ) на проектной высоте (не менее 4,5 м от земли до токоведущих частей) и крепится четырьмя шпильками.

Отличительной особенностью высоковольтных модулей ВМ от других ПКУ являются малые габариты и вес. Это достигнуто за счет примене-

Конструкция предусматривает возможность установки до трех трансформаторов тока и двух трансформаторов напряжения на номинальное напряжение 6 и 10 кВ (ТПОЛ-10 III УХЛ1, НОЛП-10 УХЛ2).







Условия эксплуатации

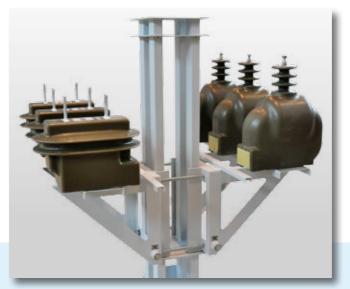
В части воздействия климатических факторов внешней среды исполнение УХЛ, категория размещения 1 по ГОСТ 15150.

В части стойкости к механическим внешним воздействующим факторам группа М1 по ГОСТ 17516.1.

Высота над уровнем моря - не более 1000 м. Окружающая среда не взрывоопасная, не содержащая токопроводящей пыли, а также агрессивных паров и газов в в концентрациях, вызывающих разрушение металла и изоляции.

Рабочее положение в пространстве вертикальное с допустимым отклонением не более 10° в любую сторону.

Технические характеристики


Номинальное напряжение, кВ	6(10)
Номинальная частота, Гц	50
Наибольшее рабочее напряжение, кВ	7,2(12,0)
Номинальный ток главных цепей, А	5-600
Номинальный ток вспомогательных цепей, А	5
Ток термической стойкости, кА (1 сек)	40*
Номинальный ток электродинамической стойкости, кА (амплитуда)	102*
Степень защиты по ГОСТ 14254	IP43
Климатическое исполнение и категория размещения по ГОСТ 15150	УХЛ1

^{*} Значения приведены для номинального тока главных цепей 600 А

Комплектность поставки

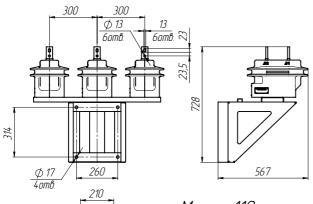
Комплект поставки ВМ включает в себя трансформаторы тока и напряжения (кол-во по заказу), каркас, блок зажимов низковольтных цепей и весь необходимый крепеж для установки на опоре ВЛ и подключения к линии электропередачи.

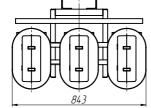
Высоковольтный модуль для пунктов коммерческого учета с трансформаторами наружной установки

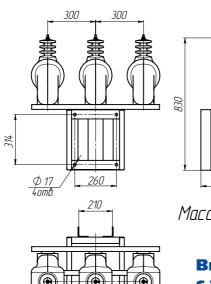
Основные сведения об изделии

Высоковольтный модуль предназначен для использования в составе пунктов коммерческого учета наружной установки в воздушных распределительных сетях 6-10 кВ.

Конструктивные особенности


Высоковольтный модуль (ВМ) представляет собой две металлические рамы на которых установлены трансформаторы тока и напряжения. На рамах предусмотрено крепление кабелей низковольтных цепей и места заземления. Рамы с трансформаторами, объединяясь в ВМ, устанавливаются на противоположных сторонах опоры воздушной линии (ВЛ) на проектной высоте (не менее 4,5 м от земли до токоведущих частей) и крепятся между собой четырьмя шпильками.





Масса: 110 кг

Внешний вид рамы с трансформаторами тока

M 10 3 места

Масса: 110 кг

Внешний вид рамы с трансформаторами напряжения Конструкция предусматривает возможность установки до трех трансформаторов тока и до трех трансформаторов напряжения на номинальное напряжение 6 и 10 кВ (ТОЛ-10 III УХЛ1 и ЗНОЛ-10 III УХЛ1).

Условия эксплуатации

В части воздействия климатических факторов внешней среды — исполнение УХЛ, категория размещения 1 по ГОСТ 15150.

В части стойкости к механическим внешним воздействующим факторам – группа М6 по ГОСТ 17516.1.

Высота над уровнем моря - не более 1000 м. Окружающая среда не взрывоопасная, не содержащая токопроводящей пыли, а также агрессивных паров и газов в в концентрациях, вызывающих разрушение металла и изоляции.

Рабочее положение в пространстве вертикальное с допустимым отклонением не более 10° в любую сторону.

Технические характеристики

Номинальное напряжение, кВ	6(10)
Номинальная частота, Гц	50
Наибольшее рабочее напряжение, кВ	7,2(12,0)
Номинальный ток главных цепей, А	5-600
Номинальный ток вспомогательных цепей, А	5
Ток термической стойкости, кА (1 сек)	40*
Номинальный ток электродинамической стойкости, кА (амплитуда)	102*
Климатическое исполнение и категория размещения по ГОСТ 15150	УХЛ1

^{*} Значения приведены для номинального тока главных цепей 600 А

Комплектность поставки

Комплект поставки ВМ включает в себя трансформаторы тока и напряжения (кол-во по заказу), рамы для установки трансформаторов (2 шт.) и весь необходимый крепеж для установки на опоре ВЛ и подключения к линии электропередачи.

Проходные трансформаторы тока ТПОЛ-10 III УХЛ 1

Трансформаторы предназначены для установки в пунктах коммерческого учета (<u>ПКУ</u>). Трансформаторы изготавливаются в исполнении «УХЛ» категории размещения 1 или 2 по ГОСТ 15150. Рабочее положение — вертикальное.

Технические характеристики

Номинальный первичный ток, А	5 – 1000		
Класс точности по ГОСТ 7746:			
вторичной обмотки для измерений	0,2; 0,2S; 0,5; 0,5S; 1*		
вторичной обмотки для защиты	10P		
Номинальная вторичная нагрузка, ВА, вторичных обмоток:			
при соs φ = 1	1; 2; 2,5**		
при $\cos \varphi = 0.8$ (нагрузка индуктивно - активная)	5; 10**(3)		

- * Для конструктивного исполнения 1, 2 классы точности 0,2 и 0,2S возможны для первичных токов от 100 A и выше.
- ** Значение вторичной нагрузки уточняется в заказе.
- (В скобках указана нагрузка для серийных изделий)

Примеры составления заказа

Трансформатор тока ТПОЛ-10 III с номинальным первичным током 300 А, номин. вторичный ток 5 А, одна обмотка класса точности 0,5S с ромбовидной плитой: ТПОЛ-10 III-1.2-1-0,5S-300/5 УХЛ1

Трансформатор тока ТПОЛ-10 III с номинальным первичным током 300 А, номин. вторичный ток 5 А, две обмотки классов точности 0,5 и 10Р с ромбовидной плитой: ТПОЛ-10 III-1.2-2-0,5/10Р-300/5 УХЛ1

Трансформатор тока ТПОЛ-10 III с номинальным первичным током 800 А, номин. вторичный ток 5 А, одна обмотка класса точности 0,5 с нагрузкой 10 В·А, с ромбовидной плитой: ТПОЛ-10 III-1.2-1-0,5-800/5 УХЛ1 10В·А

Полная информация по трансформаторам на сайте www.cztt.ru, сзтт.рф

620043, Россия, Екатеринбург, ул. Черкасская, 25 www.cztt.ru сзтт.рф